an International CBSE Finger Print School
Coimbatore

SUBJECT - CHEMISTRY

GRADE-XII

SOLUTIONS

TOPIC - LATTICE ENERGY \& HYDRATION ENERGY

SOLUTIONS

$$
\begin{aligned}
& \text { LATTICE } \\
& \text { ENERGY, } \\
& \text { HYDRATION } \\
& \text { ENERGY }
\end{aligned}
$$

Did you observe this?
When a liquid in an open glass vessel is exposed to sky (i.e. left open without covering with a liquid) after the some time the level of liquid in vessel is found to decrease. This process is called evapouration.

Did you observe this?
If the liquid is placed in closed glass vessel after some time it is observed that droplets of liquid can be collected on the walls. This process is called condensation.

$$
\begin{aligned}
& \text { wessel cowered vuith a lid } \\
& \text { IIduid droplets corndemse } \\
& \text { om wualls and are fallimg } \\
& \text { back }
\end{aligned}
$$

> When a vessel is connected a manometer, the liquid level in it raises indicating that there is effect of pressure as the vapour of the liquid exerts a pressure on liquid in the manometer column.

rate of evaporation=rate of condensation
manometer reads a constant value
indicating equilibrium is attained
fpruvard process evaporation indicated by
an upward arrow and condensation by
downumard arrown.
> When a vessel is connected a manometer, the liquid level in it raises indicating that there is effect of pressure as the vapour of the liquid exerts a pressure on liquid in the manometer column.
> The pressure exerted by the vapour over liquid surface where there exists an equilibrium between vapour and liquid at a particular temperature is called vapour pressure.
$>$ Different liquids have different vapo pressures at the same temperature

Do you know the reason behind this?

The attractive forces between molecules are different depending upon the nature of liquid.
1.Lattice energy \& Hydration energy are respectively
a) Endothermic , endothermic
b) exothermic, endothermic
c) exothermic, exothermic
T) endothermic, exothermic

VAPOUR PRESSURE OF LIQUID SOLUTIONS

VAPOUR PRESSURE OF LIQUID SOLUTIONS:

1. Liquid solutions are formed when solvent is a liquid. The solute can be a gas, liquid or solid.
2. The solution containing two components (Binary). These are
i) Liquids in liquids
ii) Solids in liquids

VAPOUR PRESSURE OF LIQUID - LIQUID SOLUTIONS:
$>$ A binary solution containing two volatile liquids.
These are components $\mathbf{1 \& 2}$ taken in a closed vessel.

VAPOUR PRESSURE OF LIQUID - LIQUID SOLUTIONS:
> Both the components vapourise and equilibrium state is established between vapour phase and liquid phase.

VAPOUR PRESSURE OF LIQUID - LIQUID SOLUTIONS:

In a binary solution of two liquids:
Let P_{1} be the partial vapour pressure of the first component,
P_{2} be the partial vapour pressure of the second component and
$P_{\text {total }}$ be the total vapour pressure of the solution.

VAPOUR PRESSURE OF LIQUID - LIQUID SOLUTIONS:
The total vapour pressure ($\mathbf{P}_{\text {total }}$) becomes equal to the sum of the partial pressures of two components $\mathbf{1 \& 2}$ respectively.

$$
\therefore \mathbf{P}_{\text {total }}=\mathbf{P}_{1}+\mathbf{P}_{\mathbf{2}}
$$

NOTE

The partial pressures are related to mole fractions \mathbf{X}_{1} and $\mathbf{X}_{\mathbf{2}}$ of the two components 1 and 2 respectively.

1.If $\mathbf{P}_{1}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}$ are the partial pressures then $\mathbf{P}_{\text {total }}=$

a) $\boldsymbol{P}_{\text {total }}=\mathbf{P}_{1}+\mathbf{P}_{2}+\mathbf{P}_{3}$
b) $\mathbf{P}_{\text {total }}=\mathbf{P}_{\mathbf{1}}-\mathbf{P}_{\mathbf{2}}+\mathbf{P}_{\mathbf{3}}$
c) $\mathbf{P}_{\text {total }}=\mathbf{P}_{1}+\mathbf{P}_{2}-\mathbf{P}_{3}$
d) $\mathbf{P}_{\text {total }}=\frac{\mathbf{P}_{1}+\mathbf{P}_{2}}{\mathbf{P}_{3}}$

RAOULT'S LAW (PART-I)

Raoult's law:

Francois Marte Raoult (1886) gave the quantitative relationship between partial pressure and molefraction .

It states that "the partial vapour pressure of each component in the solution of volatile liquids is directly proportional to molefraction of it in the solution".

Raoult's law:

$$
\therefore \mathbf{p}_{1} \propto \mathbf{x}_{1} \quad \& \quad \therefore \mathbf{p}_{2} \propto \mathbf{x}_{2}
$$

$\mathbf{x}_{1} \& x_{2}$ are mole fractions of $1 \& 2$ components

$$
\begin{aligned}
\therefore \mathbf{p}_{1} & =\mathbf{p}_{1}^{0} \cdot \mathbf{x}_{1} \rightarrow 1 \\
\mathbf{p}_{2} & =\mathbf{p}_{2}^{0} \cdot \mathbf{x}_{2} \rightarrow 2
\end{aligned}
$$

$p_{1}{ }^{\mathbf{0}} \boldsymbol{\&} p_{2}{ }^{\mathbf{0}}$ are vapour pressure of pure components $\mathbf{1} \& 2$ respectively.

Raoult's law:

According to Dalton's Law of partial pressures "the total pressure over the solution phase in the container will be the sum of the partial pressures of the components of the solution".

Therefore, the final relation

$$
\therefore \mathbf{P}_{\text {total }}=\mathbf{p}_{1}+\mathbf{p}_{2}
$$

Raoult's law:

substitute the values of p_{1} and p_{2}

$$
\therefore \mathbf{P}_{\text {total }}=\mathbf{p}_{1}{ }^{0} \cdot \mathbf{x}_{1}+\mathbf{p}_{2}{ }^{0} \cdot \mathbf{x}_{2}
$$

Sum of the Mole fraction of $x_{1}+x_{2}=1$

$$
\begin{aligned}
& \quad \mathbf{x}_{1}=\left(\mathbf{1}-\mathbf{x}_{2}\right) \\
\therefore \mathbf{P}_{\text {total }} & =\left(\mathbf{1}-\mathbf{x}_{2}\right) \mathbf{p}_{1}{ }^{0}+\mathbf{p}_{2}{ }^{0} \cdot \mathbf{x}_{2} \\
& =\mathbf{p}_{1}{ }^{0}-\mathbf{x}_{2} \cdot \mathbf{p}_{1}{ }^{0}+\mathbf{x}_{2} \mathbf{p}_{2}{ }^{0} \\
\therefore \mathbf{P}_{\text {total }} & =\mathbf{p}_{1}{ }^{0}+\mathbf{x}_{2}\left(\mathbf{p}_{2}{ }^{0}-\mathbf{p}_{1}{ }^{0}\right)
\end{aligned}
$$

Raoult's law:

From the above equations the following conclusions can be drawn:
(a) Total vapour pressure over the solution can be related to the mole fraction of any component.
(b) Total vapour pressure over the solution varies linearly with the mole fraction of any component (1 or 2).
(c) Depending on the vapour pressure of the pure components $1 \& 2$, total vapour pressure over the solution either decreases or increases with the increase of the mole fraction of either component (1 or 2).

Raoult's law:

$x_{1}=$ mole fraction of solvent
$x_{2}=$ mole fraction of solute
$>$ The graphical representation of vapour pressure versus mole fraction of an ideal solution at constant temperature.

Raoult's law:

$>$ The dotted lines I \& II represent the partial pressure of the components.
> The thick line curve represents the total vapour pressure of the components..
$>$ The minimum value of the $P_{\text {total }}$ is equal to $P_{1}{ }^{0}$ and the maximum value is equal to $P_{2}{ }^{0}$ that is (i.e) $P_{1}{ }^{0}<P_{2}{ }^{0}$.
$>$ Using the Dalton's Law of partial pressure.

Partial pressure $\left(\mathbf{P}_{\mathbf{i}}\right)=$ Mole fraction $\left(\mathbf{X}_{\mathbf{i}}\right) \mathbf{x}$ Total pressure (\mathbf{P}).
$\therefore \mathbf{P}_{\mathbf{i}}=\mathbf{x}_{\mathrm{i}} \cdot \mathbf{p}$

Very important point

The composition of vapour phase in equillibrium with the solution is determined by the partial pressures of the components. If $\mathbf{y}_{\mathbf{1}}$ and $\mathbf{y}_{\mathbf{2}}$ are the mole fractions of the components 1 and 2 respectively in the vapour phase then, using Dalton's law of partial pressures.

$$
\begin{aligned}
& \mathbf{P}_{1}=\mathbf{y}_{1} \cdot \mathbf{P}_{\text {total }} \\
& \mathbf{P}_{2}=\mathbf{y}_{2} \cdot \mathbf{P}_{\text {total }}
\end{aligned}
$$

Raoult's law a special case of Henry's Law
"The partial pressure of the volatile component or gas is directly proportional to its mole fraction in solution.
$\therefore \mathbf{p} \propto \mathbf{x}$

$$
\therefore \mathbf{p}=\mathbf{K}_{\mathbf{H}} \cdot \mathbf{x}
$$

$p=$ partial pressure of the gas
$\mathbf{x}=$ mole fraction of its solution
$K_{H}=$ Henry's law constant
Which K_{H} becomes equal to $P_{i}{ }^{0}$
1.Rate of evaporation depends upon
a) Nature of liquid
b) Surface area of the liquid
c) temperature
d) Flow of air current over the surface

The correct answer is

1) a,b only 2)b,c only 3)a,b and conly 4) f,b,c and d

RAOULT'S LAW (PART-II)

Q) Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dicholoro methane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K are 200 mm and 415 mm of Hg respectively. Calculate the v.p of the solution prepared by mixing 25.5 g of CHCl_{3} and 40 g of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .

SOLUTION

Molar mass of $\mathbf{C H C l}_{3}=119.5 \mathrm{~g}$
Molar mass of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=85 \mathrm{~g}$
No. of moles of $\mathrm{CHCl}_{3}=\frac{\text { weight }}{\text { Molar mass }}$ No. of moles of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=\frac{\text { weight }}{\text { Molar mass }}$

$$
=\frac{25.5}{119.5}=0.213 \quad=\frac{40}{85}=0.47
$$

Q) Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dicholoro methane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K are 200 mm and 415 mm of Hg respectively. Calculate the v.p of the solution prepared by mixing 25.5 gms of CHCl_{3} and 40 gms of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .

SOLUTION

\therefore Total no. of moles $=\mathbf{0 . 2 1 3}+\mathbf{0 . 4 7}$
$=0.683$ moles
Mole fraction of $\mathrm{CHCl}_{3}=\frac{0.213}{0.683}$

$$
=0.312
$$

Q) Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dicholoro methane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K are 200 mm and 415 mm of Hg respectively. Calculate the v.p of the solution prepared by mixing 25.5 gms of CHCl_{3} and 40 gms of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .

SOLUTION

$$
\text { Mole fraction of } \begin{aligned}
\mathrm{CH}_{2} \mathrm{Cl}_{2} & =\frac{0.47}{0.683} \\
& =0.688
\end{aligned}
$$

Q) Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dicholoro methane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K are 200 mm and 415 mm of Hg respectively. Calculate the v.p of the solution prepared by mixing 25.5 gms of CHCl_{3} and 40 gms of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K .

SOLUTION

using equation

$$
\therefore \mathbf{P}_{\text {total }}=\mathbf{p}_{1}^{0}+\left(\mathbf{p}_{2}^{0}-\mathbf{p}_{1}^{0}\right) \mathbf{x}_{2}
$$

$$
\begin{aligned}
P \text { total } & =200+(415-200) \times 0.688 \\
& =200+147.9 \\
& =347.9 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

Vapour Pressure:

$>$ The pressure exerted by the vapour molecules of a liquid when they are in equilibrium with the liquid of a given temperature is called Vapour pressure of the liquid at that temperature.
> Vapour pressure of the liquid is measured by barometric method.

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

Vapour Pressure:

> The vapour pressure of the solution is always less than that of pure solvent.
> In solution some of the non-volatile solute molecules occupies the surface of the solution. Therefore the fraction of the surface covered by the solvent molecules get reduced.

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

Vapour Pressure:

> The vapour pressure of the solution is always less than that of pure liquid.

Vapour Pressure:

> The decrease in a vapour pressure of solvent depends on the quantity of non-volatile solute present in the solution.

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

Vapour Pressure:

e.g.-

One mole of urea is dissolved in $1 \mathbf{k g}$ of water exerting vapour pressure is same as that of one mole of sucrose is dissolved in one kg of water at the same temperature.

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

Vapour Pressure:

> Raoult's law is in general "for any solution the partial vapour pressure of each volatile component in the solution is directly proportional to the mole fraction."

$$
\begin{aligned}
& \therefore \mathbf{p}_{\mathrm{i}} \propto \mathrm{x}_{\mathrm{i}} \text { and } \mathrm{P}_{\mathrm{i}}=\mathbf{p}_{1}{ }^{0} \cdot \mathrm{x}_{\mathrm{i}} \\
& \mathbf{P}_{1}{ }^{0}= \text { Proportional constant } .
\end{aligned}
$$

It is equal to vapour pressure of pure solvent

VAPOUR PRESSURE OF SOLUTIONS OF SOLIDS IN LIQUIDS

Vapour Pressure:

$>$ Plot a graph between vapour pressure and mole fraction of the solvent and the shape of curve is linear.

MCQs

1. As temperature increases, vapour pressure of a liquid
a) Increases linearly
b) Decreases linearly

Increases exponentially
d) Decreases exponentially

Thank you...

